Home Industry Amorphology Partners with AddiTec for the Additive Manufacturing of Large Steel Strain...

Amorphology Partners with AddiTec for the Additive Manufacturing of Large Steel Strain Wave Gear Flexsplines

Amorphology Inc., a NASA spinoff company founded from technology developed at the Jet Propulsion Laboratory (JPL) and the California Institute of Technology, has partnered with Additive Technologies (AddiTec), a founding partner of Meltio which is an additive manufacturing company pioneering the development of affordable metal 3D printing systems. Together, Amorphology & AddiTec are developing the additive manufacturing of large steel strain wave gear flexsplines.

Strain wave gears are a compact and zero backlash gearbox used in robotic arms and precision-motion mechanisms. They transmit torque through a geared thin-walled cup, hat, or band, called a flexspline. The flexspline has precise gear teeth and a flexible wall, a combination of qualities that drives the manufacturing costs of a strain wave gearbox. Because of their complexity, strain wave gears can account for a substantial portion of the cost of a six-degree-of-freedom (6DOF) robotic arm.

“When you look at machining of flexsplines that are 6 to 8 inches in diameter, the large steel feedstock may be reduced to as little as 10% of its original volume. This is a detriment from both cost and sustainability standpoints, as energy and material are wasted to produce a part which is a shell of the original stock. Additive manufacturing becomes a promising alternative since the machining costs can potentially be dramatically reduced while allowing for the cost-effective use of high-performance steels,” said Dr. Glenn Garrett, Amorphology CTO.

Amorphology & AddiTec together have demonstrated a 6-inch diameter prototype of a strain wave gear flexspline printed in high-performance 17-4 precipitation hardened steel. The prototype was fabricated on a Haas CNC hybrid system running the Meltio Engine. The printed part was removed from the build-tray and then CNC machined into the precision shape. The process also allows for flexible and on-time production of a variety of large flexsplines without having to keep many diameters of stock in house.

“We are thrilled to work with Amorphology and offer solutions to fabricate their parts by dramatically reducing the need for expensive machining. We look forward to working together to drive innovation,” said Dr. Yash Bandari, Business Development Manager at Additive Technologies (AddiTec).

 

“AddiTec uses Meltio’s Laser Metal Deposition with wire and/or powder (LMD-WP) technology (a form of DED). In LMD-WP process, lasers create a melt pool in which wire and/or powder is fed to create weld beads. These weld beads are then layered precisely to fabricate near-net shaped metal components. This technology can be used to create components from a CAD design or for part repair. In addition, the ability to integrate with a CNC machine makes it a hybrid system. Hybrid manufacturing is a ‘one-stop solution’ for seamless metal component production – it combines both additive and subtractive operations on one common platform, thereby reducing the overall cost and time for fabricating components,” explains Brian Matthews, CEO of AddiTec.

Amorphology & AddiTec plan to develop this technology and expand their partnership to multi-material and functionally graded material flexsplines, which cannot be produced conventionally.

About Amorphology

Headquartered in Pasadena, California, Amorphology is a NASA JPL/Caltech spinoff with exceptional lineage and intellectual property developed as part of the space program. Amorphology is a leader in applying advanced materials and manufacturing technologies toward improving gear production for robotics and other industrial applications using amorphous metals, also known as bulk metal glass (BMG), additive manufacturing, and custom metal alloys and composites. More information: www.amorphology.com

About AddiTec

AddiTec is a founding partner of Meltio and is proud to serve as the master reseller of Meltio products in North America. AddiTec has a 6-year heritage in the design and development of multi-laser metal direct deposition technology and has completed a broad range of customer installations and benchmark work in North America, as well as providing training and customer application support. AddiTec’s customers include prominent universities, major research centers, technology centers, national laboratories, and a wide range of industrial customers in the aerospace, nuclear, automotive, mining and energy sectors. More information: www.additec.net

Picture: Additive manufacturing used to produce a 6-inch diameter strain wave gear flexspline from 17-4 PH steel. The part was manufactured using directed energy deposition and then precision-machined into the final shape. The prototype is compared to a common size-20 flexspline measuring approximately 2 inches in diameter. For larger flexsplines, additive manufacturing can provide significant cost savings and open the ability to tailor material properties. SOURCE: Amorphology


Subscribe to our Newsletter

3DPResso is a weekly newsletter that links to the most exciting global stories from the 3D printing and additive manufacturing industry.

Privacy Policy*
 

You can find the privacy policy for the newsletter here. You can unsubscribe from the newsletter at any time. For further questions, you can contact us here.