Home Research & Education Fluorescent Artificial Seeds monitor Soil Temperature using Drones

Fluorescent Artificial Seeds monitor Soil Temperature using Drones

The new Acer i-Seed has been described in the prestigious scientific journal Science Advances by the research group led by Barbara Mazzolai at IIT in Genova (Italy), in collaboration with the Leibniz Institute for New Materials (INM), Saarbrücken, Germany. The study has been supported by funds of the European Union thanks to the project I-Seed, coordinated by IIT.

The artificial seed replicates the aerodynamic behavior of the Acer campestre seed, an Acer species native to Europe. When mature, these seeds detach from the plant and are carried away and dispersed by the wind over large distances. Interestingly, these seeds exploit a mono-winged peculiar aerodynamic design that allows them to rotate as a helicopter blade while falling. This autorotation lowers the descent speed and allows the seed to stay more in the air, thus increasing the chances of dispersion by wind gusts. The same seed species was the one which perhaps inspired the genius Leonardo Da Vinci to draft his “vite aerea”.

Researchers at IIT are working in the field of bio-inspired soft robotics and, after mimicking the growth and movement strategies of the roots, climbing plants and Geraniaceae seeds, the group has now focused on studying the flying and dispersal features of the structures of the winged Acer seeds.

“This study demonstrates that imitating the strategies or structures of living beings and replicating them in robotic technologies are key elements to obtain innovation with low environmental impact in terms of energy and pollution“, commented Barbara Mazzolai, Associate Director for Robotics of the IIT and Director of the Bioinspired Soft Robotics (BSR) Lab.

After analyzing the morphology, histology and aerodynamics of the natural seeds, the researcher group designed and realized the artificial biomimetic seed. Then they have developed a biocompatible and compostable material based on polylactic acid (PLA) with embedded non-toxic fluorescent lanthanide particles, that are sensitive to the temperature. Finally, they have used 3D printing technologies for the fabrication of the artificial luminescent seeds.

The fluorescent artificial seed-like fliers hold potential for deployment by drones equipped with fLiDAR (fluorescence Light Detection and Ranging), enabling remote and distributed monitoring of the soil temperature and other parameters. Researchers have already tested on-field the I-Seed Acer released by a drone, demonstrating its feasibility.

“Moving the sensing into the material obviates power sources and electronics, making the flier eco-friendly and robust”, says Tobias Kraus, who leads the development of the flyer’s sensor materials at INM – Leibniz-Institute for New Materials.

While this research primarily focuses on thermal sensing, in the future researchers are considering incorporating fluorescent particles sensitive to other significant environmental parameters, such as humidity, CO2 level, or pollutants.

The next step will be to collaborate with interested companies to use these new soft robots, the Acer i-Seeds, in larger areas, such as agricultural terrains, for a distributed, simultaneous, and wireless and eco-friendly environmental analysis.

Subscribe to our Newsletter

3DPResso is a weekly newsletter that links to the most exciting global stories from the 3D printing and additive manufacturing industry.

Privacy Policy*

You can find the privacy policy for the newsletter here. You can unsubscribe from the newsletter at any time. For further questions, you can contact us here.